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Magurele, Romania
Date: after Corona 

Nuclide Identification, Quantification, and Uncertainty

Nuclear Forensics Technical Measurement Training
- Gamma Spectrometry -



Objective

The objective of this presentation is to provide an
overview of nuclide identification, quantification, and
uncertainty using gamma-ray spectrometry.



Part 1: Nuclide Identification

Gamma-ray spectrometry can be used for relatively rapid, initial, non-destructive identification of radionuclides in
an item of interest before destructive analysis methods are employed.

The first step in a gamma-ray analysis of an item is
to determine what gamma-emitting nuclides are
present in the item.



Gamma Rays as “Fingerprints for Radionuclides”
• Gamma rays are specific to a radionuclide
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Gamma-Ray Spectrum: Histogram of energies 
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Gamma Rays as “Fingerprints for Radionuclides”
• The observed gamma-ray signature can change with measurement 

conditions such as shielding or detector type.

HPGe

Sodium Iodide (NaI)



Photon Interactions with Matter

Photoelectric Effect Compton Scattering Pair Production and Annihilation

- Required to measure full-energy peaks
- Also contributes to continuum

- Origin of the continuum
- Also contributes to full-energy peaks

- Single and double escape peaks
- Annihilation radiation
- Also contributes to full-energy peaks



How do Photon Interactions Affect the Data?

Full-Energy Peaks form the primary signature

Continuum, Backscatter,  Compton Edge

Also sum peaks, 
escape peaks etc.



Using Pattern Recognition
• Pattern recognition can help expedite analysis
• Different measurement conditions can change the observed pattern

BLU: Bare Plutonium (6% Pu-240)
BLK: Shielded Plutonium (6% Pu-240)



Using an Energy-Based Search
• An energy-based confirmation of nuclide identification should always be used
• You must have a good energy calibration to do this.



Understand the Natural Background

Pattern recognition of “landmark” peaks, such as those from K-40, Th-232, and U-
238/Ra-226 in the natural background can help with energy calibration.

K-40 (1460)

Th-232(d) (2614)

Also, having a good knowledge of background energies can help 
sort out peaks from nuclides that are not part of the natural 
background.



Comparing your Unknown Item to Background

BLU: Background
BLK: Unknown Item

background peaks

K-40 (1460)

Peaks only from the 
unknown item



Other Spectral Effects: Random Coincidence

662 keV

662 + 662-keV
Random Sum 

60% DT

8% DT
K-40 (1460)



Other Spectral Effects: True Coincidence



Escape Peaks & Annihilation Radiation
Escape Peaks Annihilation Radiation



Neutron-Induced Gammas
• Neutron-Capture Lines
• Neutron-Inelastic Scattering Lines
• Counts above 2614.5 keV
• Neutron “ski slopes” in germanium

Ge(n,n’)

H(n,γ)
2223

Fe(n,n’)
847

Continuum above 2614 keV
From neutron-induced peaks at 
higher energies

K-40 (1460)



Bremsstrahlung

BLU: Background
BLK: Sr/Y-90 Source

K-40 (1460)



Degenerate Solutions
• Sometimes (not often) the search result will clearly indicate a single isotope
• Usually, there will be several possible sources

Primary: Detective Pu.chn     Live time: 285.4 sec     True time: 309.42 sec    Date & time: 6/6/2005 12:34:15 PM    Reference: Detective Lu177m.chn

Energy in keV
470460450440430420410400390380370

Log
 cou

nts 
per 

keV

4

3

2

177mLu(413.66 keV)
239Pu(413.72 keV)



Real-World Example
• Shipment seized by U.S. Customs on suspicion of smuggled special 

nuclear material. 

Submission email:
“Per our conversation, see GR-
135 file for analysis. In 
addition to the neptunium-237 
we are getting a plutonium-
239.(See attached file)   
sixmin~1.dat” 


[image: image1.png]

This the area of concern










Real-World Example
• Radioactive boxes contain glass. 
• GR-135 reports Np-237 & Pu-239.
• Analysts identified Lu-176, no Np, no Pu


[image: image1.png]

This is the commodity, crystal looking stuff, manifested as scrap material.










Part 2: Nuclide Quantification

The second step in a gamma-ray analysis of an
item is often to determine how much of each
gamma-emitting nuclide is present in the item.

Nuclear forensics can support the investigative authorities identify the truth about a specific incident by answering
the questions what, where, how, when and why an illicit activity occurred and possibly who was involved

3.7E4 Bq 3.7E10 Bq



Mathematics for Activity Quantification

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐶𝐶(𝐸𝐸)
𝑌𝑌(𝐸𝐸)

�
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𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
𝑇𝑇1/2

𝑙𝑙𝑙𝑙𝑙
�

𝐴𝐴
6.0𝑙𝑙𝐸𝐸 + 𝑙3

C(E):   count rate for a specific gamma-ray peak
Y(E):  yield (branching ratio) for that gamma ray
εAbs (E):  absolute detection efficiency at that gamma ray energy
T1/2:  half life of the nuclide emitting that gamma ray
A: atomic mass of this nuclide



Absolute Detection Efficiency
• Of the gamma rays emitted …

Self Attenuation: What 
fraction escape the source 
with their full energy?

External Attenuation: Of those, what 
fraction transmit through any intervening 
material with their full energy?

Solid Angle: Of those, what 
fraction (geometrically) reach 
the face of the detector?

Intrinsic Efficiency: And of those, 
what fraction deposit their full 
energy in the detector?



Solid Angle

r
R

θ

( )θ
π

cos1
2
1

4
−=

Ω

Solid angle fraction out of 4p steradians for 
a detector with radius R at a distance r
from the source where θ = tan-1(R/r):

Detector

γ

γ
γ



Inverse-Square Law

distance = r
area  = A
e.g. 400 cps

distance = 2r
area needed for same rate  = 4A
Rate for 1 square = 100 cps

Let’s say 1 square = the area 
covered by your detector.

γ-ray field

If you double the distance, the count rate drops by a factor of 4

C ∝
1
𝑟𝑟2

Count rate



The Importance of Source-to-Detector Distance

r2

r1

The observed dose rate in these 
two cases could be the same.

But the farther source is much more intense!

We need to know the source-to-
detector distance to calculate 
the activity or mass of the source.



External Attenuation
• If we know the type and thickness of intervening (external) 

attenuating materials we can correct for their effect.



Self Attenuation
• E.g. SNM metal is high-Z, high-ρ material. It is very good at 

attenuating gamma rays, even those from itself.



Self Attenuation
• We must integrate over the attenuation experienced at all points in 

the item at all energies of interest.



Relative Efficiency
• General Expression for Peak Area Count Rate: 

• Rearrange

• Relative efficiency is proportional to counts and branching ratio

Relative Efficiency depends on:
Intrinsic Detector Efficiency

Attenuation
𝜀𝜀𝑅𝑅 ∝

𝐶𝐶
𝑌𝑌

�̇�𝐶 𝐸𝐸 = count rate at energy E
𝜆𝜆 = decay constant
N = number of nuclei
Y(E) = branching ratio (yield) at energy E
𝜀𝜀𝐴𝐴 𝐸𝐸 =absolute efficiency at energy E

�̇�𝐶 𝐸𝐸 = 𝜆𝜆𝑁𝑁 � 𝑌𝑌 𝐸𝐸 𝜀𝜀𝐴𝐴 𝐸𝐸

𝜀𝜀𝐴𝐴 𝐸𝐸 =
1
𝜆𝜆𝑁𝑁

�̇�𝐶 𝐸𝐸
𝑌𝑌 𝐸𝐸



‘Flattening’ the Relative Efficiency Curve
• A shielded 226Ra source was measured
• Our goal is to vary the amount of Pb to “flatten” the RE curve

– The corrected data should be linear with energy
– The slope of the corrected data should be ~zero

• Once we have corrected for RE effects we can calculate the activity



Case 1: Bare Point Source
• Here we measure the activity A of an unshielded 137Cs source

– Distance: 25 cm
– Detector: ORTEC Detective  (𝜀𝜀_𝐴𝐴𝑏𝑏𝑀𝑀 (662 𝑘𝑘𝑒𝑒𝑉𝑉)@ 25 cm = 2.7E-04)
– 662-keV photon yield: 0.851
– Live Time: 110112 seconds
– 662-keV Peak Area: 7823347 +- 2851

Count Rate ≅ 71 cps

𝐴𝐴 =
�̇�𝐶 𝐸𝐸
𝑌𝑌(𝐸𝐸)

�
1

𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸)

𝐴𝐴 = 71
0.851

� 1
2.7×10−4

= 3.1 × 105 ± 113 𝐵𝐵𝐵𝐵*

*NOTE: The uncertainty is based on uncertainty in counts. We will address this later.



Case 2: Point Source + External Attenuation
• Here we measure a shielded 226Ra source

– Distance: 25 cm
– Detector: ORTEC Detective  
– Live Time: 301 seconds

𝐴𝐴 =
�̇�𝐶 𝐸𝐸
𝑌𝑌(𝐸𝐸)

�
1

𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸)
� 𝑒𝑒+𝜇𝜇𝜇𝜇𝜇𝜇

Attenuation correction 
at each energy



Case 3: Extended Source + External Attenuation
• Here we measure a shielded Pu source

– Distance: 91 cm
– Detector:  LN2-cooled HPGe  
– Live Time: 986 seconds

𝐴𝐴 =
�̇�𝐶 𝐸𝐸
𝑌𝑌(𝐸𝐸) �

1
𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸) � 𝑒𝑒

+𝜇𝜇𝜇𝜇𝜇𝜇 �
−ln 𝑒𝑒−𝜇𝜇𝜇𝜇𝜇𝜇

1 − 𝑒𝑒−𝜇𝜇𝜇𝜇𝜇𝜇 𝑃𝑃𝑃𝑃

External 
Attenuation

Self Attenuation

345
375

414 451

646

Raw RE curve

Corrected RE curve
At each energy we correct for detector 
efficiency, external attenuation, and now self 
attenuation.

In this example, self attenuation limits our 
calculated mass to < 20% of the true Pu mass.



Part 3: Uncertainty Quantification

We must consider the uncertainty involved at
each step and how it propagates to the final
result.

Nuclear forensics can support the investigative authorities identify the truth about a specific incident by answering
the questions what, where, how, when and why an illicit activity occurred and possibly who was involved



What is Uncertainty?
• Every measurement result is subject to random and possibly systematic 

fluctuations that we call ‘uncertainty’  (and sometimes ‘error’)
• Every measurement result should be stated with its associated uncertainty. 

– E.g. Uranium Enrichment: 235U % = 19.9 ± 1.3 %

• If we repeat a measurement many times we will get a distribution of results. The 
width of that distribution is related to the uncertainty.



Uncertainty Definitions
• Accuracy:  Describes the average value 

compared to the true value.

• Precision:  Describes the variations or 
dispersion of replicate measurements.

• Bias:  Difference between the average value 
and the true value.

• Random Error:  Variable error on replicate 
measurements.

• Systematic Error:  All replicate measurements 
have the same bias.



Probability Distributions: Poisson
• Probability of x number of events occurring 

in a given period of time or space.
• The events occur independently
• The probability that an event occurs does 

not change with time.

𝑃𝑃 𝑥𝑥 =
𝜆𝜆𝜇𝜇𝑒𝑒−𝜆𝜆

𝑥𝑥!

E.g.:  1 ng of 239Pu → 2.3 decays/sec.
What is the probability of 3 decays 
occurring in a 2-second period?

▪ 1 period = 2 sec → λ =  4.6 decays/sec.
▪ x=3 decays
▪ P(x=3) = 4.63 e-λ /3! = 0.16

λ = 4.6
x = 3



Probability Distributions: Gaussian
X = center of distribution

= average of many measurements

= width of distribution 
= standard deviation 

after many measurements
= uncertainty determined from     

counting statistics from one measurement

• For a large number of measurements, X is a good 
estimate of the true value.

𝐺𝐺 𝑥𝑥 =
1

𝜎𝜎 𝑙𝜋𝜋
𝑒𝑒 ⁄− 𝜇𝜇−𝑋𝑋 2 2𝜎𝜎2
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Properties of the Gaussian Distribution
• Probability within:

• How does this relate if only one measurement is made?

• If one measurement is made, there is a 68.3% chance that the true value is 
within one s and a 95.5% chance that the true value is within two s.

1 𝜎𝜎 = �
−1𝜎𝜎

1𝜎𝜎
𝐺𝐺(𝑥𝑥) = 68.3%

𝑙 𝜎𝜎 = �
−2𝜎𝜎

2𝜎𝜎
𝐺𝐺(𝑥𝑥) = 95.5%

3 𝜎𝜎 = �
−3𝜎𝜎

3𝜎𝜎
𝐺𝐺(𝑥𝑥) = 99.7%

68.3%13.6% 13.6%

2.1% 2.1%



Propagation of Error
The error, 𝜎𝜎𝑓𝑓, of a function, 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑖𝑖 , with 𝑥𝑥𝑖𝑖 random 
variables is propagated using the follow method:

𝜎𝜎𝑓𝑓2 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

𝜎𝜎𝜇𝜇1

2

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

𝜎𝜎𝜇𝜇2

2

+ ⋯+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖

𝜎𝜎𝜇𝜇𝑖𝑖

2

For example, if 𝐷𝐷 = 𝐴𝐴 − 𝐵𝐵, then 𝜎𝜎𝑆𝑆 = 𝜎𝜎𝐴𝐴 2 + 𝜎𝜎𝐵𝐵 2

A 12 ± 0.3

B 10 ± 0.4

D 2 ± 0.5

P 120 ± 5.6

𝜎𝜎𝑃𝑃 = 𝐴𝐴𝐵𝐵
𝜎𝜎𝐴𝐴
𝐴𝐴

2
+ 𝐴𝐴𝐵𝐵

𝜎𝜎𝐵𝐵
𝐵𝐵

2

if 𝑃𝑃 = 𝐴𝐴 × 𝐵𝐵, then 𝜎𝜎𝑃𝑃 = 𝐵𝐵𝜎𝜎𝐴𝐴 2 + 𝐴𝐴𝜎𝜎𝐵𝐵 2

𝜎𝜎𝑃𝑃 = 𝑃𝑃
𝜎𝜎𝐴𝐴
𝐴𝐴

2
+

𝜎𝜎𝐵𝐵
𝐵𝐵

2



Example: Uncertainty on the Activity of an
Unshielded Point Source

• Take the simple case where there is only uncertainty on the net 
count rate CN(E):

– σY=0
– σε=0

𝐴𝐴 =
�̇�𝐶𝑁𝑁 𝐸𝐸
𝑌𝑌(𝐸𝐸)

�
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𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸)

𝜎𝜎𝐴𝐴2 =
𝜕𝜕𝐴𝐴
𝜕𝜕𝐶𝐶

2

� 𝜎𝜎�̇�𝐶𝑁𝑁
2 =

1
𝑌𝑌
�

1
𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴

2

� 𝜎𝜎�̇�𝐶𝑁𝑁
2

𝜎𝜎𝐴𝐴 =
𝜎𝜎�̇�𝐶𝑁𝑁

𝑌𝑌 � 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴
OK so what is 𝜎𝜎�̇�𝐶𝑁𝑁?

Here we stress net count rate 
with the subscript N.



Net Count Rate
�̇�𝐶𝑁𝑁 = �̇�𝐶𝑇𝑇 − �̇�𝐶𝐵𝐵

Net Count Rate

Total Count Rate

Background / Continuum 
Count Rate

�̇�𝐶𝑁𝑁 = 𝐶𝐶𝑁𝑁
𝑡𝑡𝐿𝐿

= 1
𝑡𝑡𝐿𝐿

𝐶𝐶𝑇𝑇 − 𝐶𝐶𝐵𝐵

Live Time

Total  - Background Counts



Uncertainty on Net Count Rate

The total and background 
counts are assumed to follow 
Poisson statistics

𝜎𝜎�̇�𝐶𝑁𝑁
2 =

𝜕𝜕�̇�𝐶𝑁𝑁
𝜕𝜕𝐴𝐴𝐿𝐿

2

𝜎𝜎𝑡𝑡𝐿𝐿
2 +

𝜕𝜕�̇�𝐶𝑁𝑁
𝜕𝜕𝐶𝐶𝑇𝑇

2

𝜎𝜎𝐶𝐶𝑇𝑇
2 +

𝜕𝜕�̇�𝐶𝑁𝑁
𝜕𝜕𝐶𝐶𝐵𝐵

2

𝜎𝜎𝐶𝐶𝐵𝐵
2

Assume there is 
no uncertainty 
on the live time

𝜎𝜎�̇�𝐶𝑁𝑁 =
1
𝐴𝐴𝐿𝐿

𝜎𝜎𝐶𝐶𝑇𝑇
2 + 𝜎𝜎𝐶𝐶𝐵𝐵

2 =
1
𝐴𝐴𝐿𝐿

𝐶𝐶𝑇𝑇
2

+ 𝐶𝐶𝐵𝐵
2

0

𝜎𝜎�̇�𝐶𝑁𝑁 =
1
𝐴𝐴𝐿𝐿

𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐵𝐵



Uncertainty on Activity of a Bare Point Source

Using a 95% confidence interval (2σ):
Our previously-calculated Activity = 3.1 × 105 ± 𝑙𝑙6 𝐵𝐵𝐵𝐵

𝜎𝜎𝐴𝐴 =
𝜎𝜎�̇�𝐶𝑁𝑁

𝑌𝑌 � 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴
=

𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐵𝐵
𝐴𝐴𝐿𝐿𝑌𝑌 � 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴

𝜎𝜎𝐴𝐴 =
7976814 + 153467

11011𝑙 𝑀𝑀 � 0.851 � 𝑙.7𝐸𝐸 − 4

𝜎𝜎𝐴𝐴 = 113 𝐵𝐵𝐵𝐵

Using the values from our previous example of an 
unshielded point source:



Questions or Comments? 
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